Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(12): 1792-1805, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37877672

RESUMO

In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining ß2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived ß cell autoantigen-specific TCRs.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Antígenos HLA-DQ , Humanos , Camundongos , Animais , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Insulina , Camundongos Transgênicos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética
2.
Front Immunol ; 14: 1206874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346035

RESUMO

Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease. Short-term treatment with agents targeting T cells, B cells and inflammatory cytokines to modify the disease course resulted in a short-term pause in disease activity. Lessons learnt from these trials will be discussed in this review. It is expected that effective disease-modifying agents will become available for use in earlier stages of T1D. Progress has been made to analyze antigen-specific T cells with standardization of T cell assay and discovery of antigen epitopes but there are many challenges. High-dimensional profiling of gene, protein and TCR expression at single cell level with innovative computational tools should lead to novel biomarker discovery. With this, assays to detect, quantify and characterize the phenotype and function of antigen-specific T cells will continuously evolve. An improved understanding of T cell responses will help researchers and clinicians to better predict disease onset, and progression, and the therapeutic efficacy of interventions to prevent or arrest T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Imunomodulação , Linfócitos T , Citocinas
3.
J Transl Autoimmun ; 6: 100180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619657

RESUMO

Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease in which the insulin-producing beta cells are destroyed. While it is clear that full-length C-peptide, derived from proinsulin, is a major antigen in human T1D it is not clear how and why C-peptide becomes a target of the autoimmune CD4+ T-cell responses in T1D. Neoepitopes formed by the conversion of glutamine (Q) residues to glutamic acid (E) by deamidation are central to the immune pathogenesis of coeliac disease and have been implicated in autoimmune responses in T1D. Here, we asked if the immunogenicity of full-length C-peptide, which comprises four glutamine residues, was enhanced by deamidation, which we mimicked by substituting glutamic acid for glutamine residue. First, we used a panel of 18 well characterized CD4+ T-cell lines specific for epitopes derived from human C-peptide. In all cases, when the substitution fell within the cognate epitope the response was diminished, or in a few cases unchanged. In contrast, when the substitution fell outside the epitope recognized by the TCR responses were unchanged or slightly augmented. Second, we compared CD4+ T-cell proliferation responses, against deamidated and unmodified C-peptide, in the peripheral blood of people with or without T1D using the CFSE-based proliferation assay. While, as reported previously, responses were detected to unmodified C-peptide, no deamidated C-peptide was consistently more stimulatory than native C-peptide. Overall responses were weaker to deamidated C-peptide compared to unmodified C-peptide. Hence, we conclude that deamidated C-peptide does not play a role in beta-cell autoimmunity in people with T1D.

4.
Nat Commun ; 12(1): 5110, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433824

RESUMO

HLA-DQ8, a genetic risk factor in type I diabetes (T1D), presents hybrid insulin peptides (HIPs) to autoreactive CD4+ T cells. The abundance of spliced peptides binding to HLA-DQ8 and how they are subsequently recognised by the autoreactive T cell repertoire is unknown. Here we report, the HIP (GQVELGGGNAVEVLK), derived from splicing of insulin and islet amyloid polypeptides, generates a preferred peptide-binding motif for HLA-DQ8. HLA-DQ8-HIP tetramer+ T cells from the peripheral blood of a T1D patient are characterised by repeated TRBV5 usage, which matches the TCR bias of CD4+ T cells reactive to the HIP peptide isolated from the pancreatic islets of a patient with T1D. The crystal structure of three TRBV5+ TCR-HLA-DQ8-HIP complexes shows that the TRBV5-encoded TCR ß-chain forms a common landing pad on the HLA-DQ8 molecule. The N- and C-termini of the HIP is recognised predominantly by the TCR α-chain and TCR ß-chain, respectively, in all three TCR ternary complexes. Accordingly, TRBV5 + TCR recognition of HIP peptides might occur via a 'polarised' mechanism, whereby each chain within the αßTCR heterodimer recognises distinct origins of the spliced peptide presented by HLA-DQ8.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Antígenos HLA-DQ/metabolismo , Insulina/metabolismo , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/genética , Antígenos HLA-DQ/química , Antígenos HLA-DQ/genética , Humanos , Insulina/química , Insulina/genética , Peptídeos/química , Ligação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética
5.
Front Immunol ; 12: 667870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995402

RESUMO

In 2016 Delong et al. discovered a new type of neoepitope formed by the fusion of two unrelated peptide fragments. Remarkably these neoepitopes, called hybrid insulin peptides, or HIPs, are recognized by pathogenic CD4+ T cells in the NOD mouse and human pancreatic islet-infiltrating T cells in people with type 1 diabetes. Current data implicates CD4+ T-cell responses to HIPs in the immune pathogenesis of human T1D. Because of their role in the immune pathogenesis of human T1D it is important to identify new HIPs that are recognized by CD4+ T cells in people at risk of, or with, T1D. A detailed knowledge of T1D-associated HIPs will allow HIPs to be used in assays to monitor changes in T cell mediated beta-cell autoimmunity. They will also provide new targets for antigen-specific therapies for T1D. However, because HIPs are formed by the fusion of two unrelated peptides there are an enormous number of potential HIPs which makes it technically challenging to identify them. Here we review the discovery of HIPs, how they form and discuss approaches to identifying new HIPs relevant to the immune pathogenesis of human type 1 diabetes.


Assuntos
Autoantígenos/imunologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Epitopos , Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Autoantígenos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Fragmentos de Peptídeos/metabolismo
6.
Immunol Cell Biol ; 99(5): 446-447, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33973296
7.
Nat Commun ; 12(1): 2931, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006841

RESUMO

Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/genética , Antígeno HLA-A24/genética , Povos Indígenas/genética , Adulto , Alelos , Sequência de Aminoácidos , Animais , Austrália , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cães , Epitopos de Linfócito T/imunologia , Feminino , Frequência do Gene , Antígeno HLA-A24/imunologia , Humanos , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Vírus da Influenza B/imunologia , Vírus da Influenza B/fisiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade
8.
Front Endocrinol (Lausanne) ; 12: 635662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868170

RESUMO

Induced pluripotent stem cell (iPSC) technology is increasingly being used to create in vitro models of monogenic human disorders. This is possible because, by and large, the phenotypic consequences of such genetic variants are often confined to a specific and known cell type, and the genetic variants themselves can be clearly identified and controlled for using a standardized genetic background. In contrast, complex conditions such as autoimmune Type 1 diabetes (T1D) have a polygenic inheritance and are subject to diverse environmental influences. Moreover, the potential cell types thought to contribute to disease progression are many and varied. Furthermore, as HLA matching is critical for cell-cell interactions in disease pathogenesis, any model that seeks to test the involvement of particular cell types must take this restriction into account. As such, creation of an in vitro model of T1D will require a system that is cognizant of genetic background and enables the interaction of cells representing multiple lineages to be examined in the context of the relevant environmental disease triggers. In addition, as many of the lineages critical to the development of T1D cannot be easily generated from iPSCs, such models will likely require combinations of cell types derived from in vitro and in vivo sources. In this review we imagine what an ideal in vitro model of T1D might look like and discuss how the required elements could be feasibly assembled using existing technologies. We also examine recent advances towards this goal and discuss potential uses of this technology in contributing to our understanding of the mechanisms underlying this autoimmune condition.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Animais , Células Apresentadoras de Antígenos/citologia , Apoptose , Autoanticorpos , Doenças Autoimunes/metabolismo , Diferenciação Celular , Células Dendríticas/citologia , Progressão da Doença , Predisposição Genética para Doença , Variação Genética , Humanos , Técnicas In Vitro , Células Matadoras Naturais/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T/citologia
9.
Immunol Cell Biol ; 99(5): 448-460, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524197

RESUMO

One hundred years ago, Frederick Banting, John Macleod, Charles Best and James Collip, and their collaborators, discovered insulin. This discovery paved the way to saving countless lives and ushered in the "Insulin Era." Since the discovery of insulin, we have made enormous strides in understanding its role in metabolism and diabetes. Insulin has played a dramatic role in the treatment of people with diabetes; particularly type 1 diabetes (T1D). Insulin replacement is a life-saving therapy for people with T1D and some with type 2 diabetes. T1D is an autoimmune disease caused by the T-cell-mediated destruction of the pancreatic insulin-producing beta cells that leads to a primary insulin deficiency. It has become increasingly clear that insulin, and its precursors preproinsulin (PPI) and proinsulin (PI), can play another role-not as a hormone but as an autoantigen in T1D. Here we review the role played by the products of the INS gene as autoantigens in people with T1D. From many elegant animal studies, it is clear that T-cell responses to insulin, PPI and PI are essential for T1D to develop. Here we review the evidence that autoimmune responses to insulin and PPI arise in people with T1D and discuss the recently described neoepitopes derived from the products of the insulin gene. Finally, we look forward to new approaches to deliver epitopes derived from PPI, PI and insulin that may allow immune tolerance to pancreatic beta cells to be restored in people with, or at risk of, T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Autoantígenos , Autoimunidade , Humanos
10.
Sci Immunol ; 5(52)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037067

RESUMO

The nasal-associated lymphoid tissues (NALTs) are mucosal-associated lymphoid organs embedded in the submucosa of the nasal passage. NALTs represent a known site for the deposition of inhaled antigens, but little is known of the mechanisms involved in the induction of immunity within this lymphoid tissue. We find that during the steady state, conventional dendritic cells (cDCs) within the NALTs suppress T cell responses. These cDCs, which are also prevalent within human NALTs (tonsils/adenoids), express a unique transcriptional profile and inhibit T cell proliferation via contact-independent mechanisms that can be diminished by blocking the actions of reactive oxygen species and prostaglandin E2 Although the prevention of unrestrained immune activation to inhaled antigens appears to be the default function of NALT cDCs, inflammation after localized virus infection recruited monocyte-derived DCs (moDCs) to this region, which diluted out the suppressive DC pool, and permitted local T cell priming. Accommodating for inflammation-induced temporal changes in NALT DC composition and function, we developed an intranasal vaccine delivery system that coupled the recruitment of moDCs with the sustained release of antigen into the NALTs, and we were able to substantially improve T cell responses after intranasal immunization. Thus, homeostasis and immunity to inhaled antigens is tuned by inflammatory signals that regulate the balance between conventional and moDC populations within the NALTs.


Assuntos
Tonsila Faríngea/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , Tonsila Palatina/imunologia , Infecções Respiratórias/imunologia , Tonsila Faríngea/citologia , Animais , Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Modelos Animais de Doenças , Humanos , Imunidade nas Mucosas , Exposição por Inalação/efeitos adversos , Camundongos , Camundongos Knockout , Monócitos/imunologia , Mucosa Nasal/imunologia , Tonsila Palatina/citologia , Infecções Respiratórias/microbiologia , Linfócitos T/imunologia
11.
PLoS Pathog ; 16(8): e1008714, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750095

RESUMO

Seasonal influenza virus infections cause 290,000-650,000 deaths annually and severe morbidity in 3-5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαß clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαß clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-B27/genética , Epitopos Imunodominantes/imunologia , Influenza Humana/imunologia , Adulto , Idoso , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-B27/imunologia , Humanos , Epitopos Imunodominantes/genética , Memória Imunológica , Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
PLoS One ; 14(12): e0225021, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31821343

RESUMO

Type 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades. However, humanized mouse models are highly sought after because they offer both the experimental tractability of a mouse model and the clinical relevance of human-based research. Autoimmune T-cell responses against insulin, and its precursor proinsulin, play central roles in the autoimmune responses against pancreatic beta cells in both humans and NOD mice. As a first step towards developing a murine model of the human autoimmune response against pancreatic beta cells we set out to replace the murine insulin 1 gene (Ins1) with the human insulin gene (Ins) using CRISPR/Cas9. Here we describe a NOD mouse strain that expresses human insulin in place of murine insulin 1, referred to as HuPI. HuPI mice express human insulin, and C-peptide, in their serum and pancreata and have normal glucose tolerance. Compared with wild type NOD mice, the incidence of diabetes is much lower in HuPI mice. Only 15-20% of HuPI mice developed diabetes after 300 days, compared to more than 60% of unmodified NOD mice. Immune-cell infiltration into the pancreatic islets of HuPI mice was not detectable at 100 days but was clearly evident by 300 days. This work highlights the feasibility of using CRISPR/Cas9 to create mouse models of human diseases that express proteins pivotal to the human disease. Furthermore, it reveals that even subtle changes in proinsulin protect NOD mice from diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/metabolismo , Insulina/genética , Animais , Sistemas CRISPR-Cas , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Pâncreas/metabolismo
13.
Clin Transl Immunology ; 8(9): e1079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31559018

RESUMO

BACKGROUND: Although γδ T cells comprise up to 10% of human peripheral blood T cells, questions remain regarding their role in disease states and T-cell receptor (TCR) clonal expansions. We dissected anti-viral functions of human γδ T cells towards influenza viruses and defined influenza-reactive γδ TCRs in the context of γδ-TCRs across the human lifespan. METHODS: We performed 51Cr-killing assay and single-cell time-lapse live video microscopy to define mechanisms underlying γδ T-cell-mediated killing of influenza-infected targets. We assessed cytotoxic profiles of γδ T cells in influenza-infected patients and IFN-γ production towards influenza-infected lung epithelial cells. Using single-cell RT-PCR, we characterised paired TCRγδ clonotypes for influenza-reactive γδ T cells in comparison with TCRs from healthy neonates, adults, elderly donors and tissues. RESULTS: We provide the first visual evidence of γδ T-cell-mediated killing of influenza-infected targets and show distinct features to those reported for CD8+ T cells. γδ T cells displayed poly-cytotoxic profiles in influenza-infected patients and produced IFN-γ towards influenza-infected cells. These IFN-γ-producing γδ T cells were skewed towards the γ9δ2 TCRs, particularly expressing the public GV9-TCRγ, capable of pairing with numerous TCR-δ chains, suggesting their significant role in γδ T-cell immunity. Neonatal γδ T cells displayed extensive non-overlapping TCRγδ repertoires, while adults had enriched γ9δ2-pairings with diverse CDR3γδ regions. Conversely, the elderly showed distinct γδ-pairings characterised by large clonal expansions, a profile also prominent in adult tissues. CONCLUSION: Human TCRγδ repertoire is shaped by age, tissue compartmentalisation and the individual's history of infection, suggesting that these somewhat enigmatic γδ T cells indeed respond to antigen challenge.

14.
Diabetologia ; 62(12): 2245-2251, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31511930

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is an autoimmune disorder characterised by loss of insulin-producing beta cells of the pancreas. Progress in understanding the cellular and molecular mechanisms underlying the human disease has been hampered by a dearth of appropriate human experimental models. We previously reported the characterisation of islet-infiltrating CD4+ T cells from a deceased organ donor who had type 1 diabetes. METHODS: Induced pluripotent stem cell (iPSC) lines derived from the above donor were differentiated into CD14+ macrophages and tested for their capacity to present antigen to T cell receptors (TCRs) derived from islet-infiltrating CD4+ T cells from the same donor. RESULTS: The iPSC macrophages displayed typical macrophage morphology, surface markers (CD14, CD86, CD16 and CD11b) and were phagocytic. In response to IFNγ treatment, iPSC macrophages upregulated expression of HLA class II, a characteristic that correlated with their capacity to present epitopes derived from proinsulin C-peptide to a T cell line expressing TCRs derived from islet-infiltrating CD4+ T cells of the original donor. T cell activation was specifically blocked by anti-HLA-DQ antibodies but not by antibodies directed against HLA-DR. CONCLUSIONS/INTERPRETATION: This study provides a proof of principle for the use of iPSC-derived immune cells for modelling key cellular interactions in human type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ilhotas Pancreáticas/metabolismo , Macrófagos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Ilhotas Pancreáticas/imunologia , Macrófagos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
15.
J Vis Exp ; (148)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31233024

RESUMO

Described is a simple, in vitro, dye dilution-based method for measuring antigen-specific CD4+ T cell proliferation in human peripheral blood mononuclear cells (PBMCs). The development of stable, non-toxic, fluorescent dyes such as carboxyfluorescein succinimidyl ester (CFSE) allows for rare, antigen-specific T cells to be distinguished from bystanders by diminution in fluorescent staining, as detected by flow cytometry. This method has the following advantages over alternative approaches: (i) it is very sensitive to low-frequency T cells, (ii) no knowledge of the antigen or epitope is required, (iii) the phenotype of the responding cells can be analyzed, and (iv) viable, responding cells can be sorted and used for further analysis, such as T cell cloning.


Assuntos
Antígenos , Linfócitos T CD4-Positivos/fisiologia , Proliferação de Células/fisiologia , Fluoresceínas/química , Corantes Fluorescentes/química , Succinimidas/química , Linfócitos T CD4-Positivos/imunologia , Citometria de Fluxo/métodos , Humanos , Coloração e Rotulagem
16.
Diabetes ; 68(7): 1366-1379, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31221801

RESUMO

Type 1 diabetes (T1D) results from the progressive destruction of pancreatic ß-cells in a process mediated primarily by T lymphocytes. The T1D research community has made dramatic progress in understanding the genetic basis of the disease as well as in the development of standardized autoantibody assays that inform both disease risk and progression. Despite these advances, there remains a paucity of robust and accepted biomarkers that can effectively inform on the activity of T cells during the natural history of the disease or in response to treatment. In this article, we discuss biomarker development and validation efforts for evaluation of T-cell responses in patients with and at risk for T1D as well as emerging technologies. It is expected that with systematic planning and execution of a well-conceived biomarker development pipeline, T-cell-related biomarkers would rapidly accelerate disease progression monitoring efforts and the evaluation of intervention therapies in T1D.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Linfócitos T/metabolismo , Genômica , Humanos , Células Secretoras de Insulina/metabolismo , Modelos Animais
17.
Nat Immunol ; 20(5): 613-625, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778243

RESUMO

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Gammainfluenzavirus/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD8-Positivos/virologia , Criança , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Gammainfluenzavirus/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
18.
Immunol Cell Biol ; 97(5): 498-511, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30803026

RESUMO

Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.


Assuntos
Envelhecimento , Regulação da Expressão Gênica/imunologia , Proteínas de Ligação à Região de Interação com a Matriz , Adulto , Idoso , Envelhecimento/imunologia , Envelhecimento/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/biossíntese , Proteínas de Ligação à Região de Interação com a Matriz/imunologia , Pessoa de Meia-Idade , Especificidade de Órgãos/fisiologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Timócitos/citologia , Timócitos/imunologia
19.
Diabetologia ; 62(3): 351-356, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30402774

RESUMO

Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of pancreatic insulin-producing beta cells. The epitopes recognised by pathogenic T cells in human type 1 diabetes are poorly defined; however, a growing body of evidence suggests that T cell responses against neoepitopes contribute to beta cell destruction in type 1 diabetes. Neoepitopes are formed when self-proteins undergo post-translational modification to create a new epitope that is recognised by T- or B cells. Here we review the role of human T cell responses against neoepitopes in the immune pathogenesis of type 1 diabetes. Specifically, we review the different approaches to identifying neoepitopes relevant to human type 1 diabetes and outline several advances in this field that have occurred over the past few years. We also discuss the application of neoepitopes to the development of antigen-specific therapies for type 1 diabetes and the unresolved challenges that need to be overcome before the full repertoire of neoepitopes recognised by pathogenic human T cells in type 1 diabetes can be determined. This information may then be used to develop antigen-specific therapies for type 1 diabetes and assays to monitor changes in pathogenic, beta cell-specific T cell responses.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Epitopos/imunologia , Células Secretoras de Insulina/imunologia , Animais , Autoantígenos/imunologia , Humanos
20.
Front Immunol ; 9: 2800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555479

RESUMO

Diabetogenic T cells infiltrate the pancreatic islets by transmigrating across the microcapillaries residing close to, or within, the pancreatic islets. Deficiency in IFNγ signaling prevents efficient migration of T cells into the pancreatic islets, but the IFNγ-regulated molecules that mediate this are uncertain. Homing of autoreactive T cells into target tissues may require antigen specificity through presentation of cognate antigen by MHC expressed on the vascular endothelium. We investigated the hypothesis that IFNγ promotes the migration of islet antigen-specific CD4+ T cells by upregulating MHC class II on islet endothelial cells (IEC), thereby providing an antigen-specific signal for islet infiltration. Upon IFNγ stimulation, MHC class II, which is not constitutively expressed on IEC, was induced. IFNγ-dependent upregulation of MHC class II was detected in IEC isolated from prediabetic NOD mice at the earliest stages of insulitis, before other markers of inflammation were present. Using a CD4+ T cell-mediated adoptive transfer model of autoimmune diabetes we observed that even though diabetes does not develop in recipient mice lacking IFNγ receptors, mice with MHC class II-deficient IEC were not protected from disease. Thus, IFNγ-regulated molecules, but not MHC class II or antigen presentation by IECs is required for the early migration of antigen-specific CD4+ T cells into the pancreatic islets.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Endoteliais/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Interferon gama/imunologia , Ilhotas Pancreáticas/imunologia , Estado Pré-Diabético/imunologia , Animais , Biomarcadores , Linfócitos T CD4-Positivos/patologia , Células Endoteliais/patologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Interferon gama/genética , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Estado Pré-Diabético/genética , Estado Pré-Diabético/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...